Комплексные конструкции

Комплексные конструкции, конструкции из каменной кладки (стены, простенки, столбы), усиленные включенными в них железобетонными элементами, работающими совместно с кладкой. К. к. применяются в случаях…


Комплексные соединения

Комплексные соединения, координационные соединения, химические соединения, состав которых не укладывается в рамки представлений об образовании химических связей за счет неспаренных электронов. Обычно…


Комплексные удобрения

Комплексные удобрения, удобрения, содержащие 2-3 основных питательных вещества (N, P2O5, K2O) растений. В состав их можно ввести микроэлементы (В, Mn, Cu, Zn, Zn, Мо и другие). К. у. в основном…


Комплексные числа

Комплексные числа, числа вида х + iy, где х и у — действительные числа, а i — так называемая мнимая единица (число, квадрат которого равен —1); х называют действительной частью, а у — мнимой частью К. ч. z = х +iy (обозначают х =Rez, у=Imz). Действительные числа — частный случай К. ч. (при у = 0); К. ч., не являющиеся действительными (у ¹ 0), называют мнимыми числами; при х = 0 К. ч. Называют чисто мнимым. К. ч. z = х+iy и z = хiy называют комплексно-сопряжёнными. Арифметические действия над К. ч. производятся по обычным правилам действий над многочленами с учётом условия i2=1. Геометрически каждое К. ч. х + iy изображается точкой плоскости, имеющей прямоугольные координаты х и у (см. рис.). Если полярные координаты этой точки обозначить через r и j:, то соответствующее К. ч. можно представить в виде:

r (cos j + i sin j)

(тригонометрическая, или полярная, форма К. ч.);

называют модулем К. ч. х+iy, а j = arg z — аргументом его. Тригонометрическая форма К. ч. особенно удобна для действий возведения в степень и извлечения корня:

[r (cos j + i sin j)] n = rn (cos nj + i sin nj),

, в частности

, k = 0, 1, …, n—1

По своим алгебраическим свойствам совокупность К. ч. образует поле. Это поле алгебраически замкнуто, т. е. любое уравнение xn + a1xn-1+...+an =0; где a1,..., an —К. ч., имеет (при учёте кратности) среди К. ч. точно n корней.

Уже в древности математики сталкивались в процессе решения некоторых задач с извлечением квадратного корня из отрицательных чисел; в этом случае задача считалась неразрешимой. Когда же в 1-й половине 16 в. были найдены формулы для решения кубических уравнений, оказалось, что в так называемом неприводимом случае действительные корни уравнений с действительными коэффициентами получаются в результате действий над К. ч. Это содействовало признанию К. ч. Первое обоснование простейших действий с К. ч. встречается у Р. Бомбелли в 1572. Однако долгое время к К. ч. относились, как к чему-то сверхъестественному. Так, Г. Лейбниц в 1702 писал: "Мнимые числа — это прекрасное и чудесное убежище божественного духа, почти что амфибия бытия с небытием". В 1748 Л. Эйлер нашёл замечательную формулу eij = cosj + isinj, явившуюся первым важным результатом теории функций комплексного переменного, но истинный характер К. ч. выяснился лишь к концу 18 в., когда была открыта их геометрическая интерпретация (см. выше). Термин "К. ч." предложен К. Гауссом в 1831. Введение К. ч. делает многие математические рассмотрения более единообразными и ясными и является важным этапом в развитии понятия о числе (см. Число). К. ч. Употребляются теперь при математическом описании многих вопросов физики и техники (в гидродинамике, аэромеханике, электротехнике, атомной физике и т.д.). Основные разделы классического математического анализа приобретают полную ясность и законченность только при использовании К. ч., чем обусловливается центральное место, занимаемое теорией функций комплексного переменного. См. Аналитические функции.

Лит.: Маркушевич А. И., Комплексные числа и конформные отображения, 2 изд., М., 1960; Курош А. Г., Курс высшей алгебры, 9 изд., М., 1968.