Сфера (область действия)

Сфера (от греч. sphaira - шар), 1) замкнутая поверхность. 2) Область действия, пределы распространения чего-либо (например, сфера действия тяготения). 3) Обстановка, среда, общественное окружение. См…


Сфера обслуживания

Сфера обслуживания, совокупность отраслей народного хозяйства, продукция которых выступает в виде определённой целесообразной деятельности (услуг). С. о., согласно делению, принятому в планировании и…


Сфера рассеяния

Сфера рассеяния, внешний слой атмосферы, из которого происходит ускользание (рассеяние) атмосферных частиц в космическое пространство; то же, что экзосфера…


Сферическая аберрация

Сферическая аберрация, один из типов аберраций оптических систем; проявляется в несовпадении фокусов для лучей света, проходящих через осе-симметрическую оптическую систему (линзу, объектив) на разных расстояниях от оптической оси этой системы (рис.). Фокус параксиального пучка лучей, который проходит через центральную зону системы h0h1, располагается в гауссовой плоскости Oh; фокусы пучков лучей, проходящих через другие кольцевые зоны (h1h2, h2h3 и т. д.), находятся ближе гауссовой плоскости для собирающих (положительных) систем и дальше для рассеивающих (отрицательных) систем. Вследствие С. а. изображение, даваемое параллельным пучком лучей, будет на экране, перпендикулярном оси в точке О, иметь вид не точки, а кружка с ярким ядром и ослабевающим по яркости ореолом. При перемещении экрана вдоль оптической оси размеры этого кружка рассеяния и распределение в нём освещённости меняются. Для некоторого положения экрана кружок рассеяния имеет минимальные размеры (примерно в 4 раза меньше, чем в гауссовой плоскости). Различают продольную и поперечную С. а. Первая измеряется длиной отрезка Оds’ отсчитанной от гауссовой плоскости до фокуса лучей, прошедших через крайнюю зону оптической системы (h4h5 на рис.); поперечная С. а. — радиусом кружка рассеяния Odz' в гауссовой плоскости, определяемым лучами, идущими от крайней зоны h4h5 Так как для собирающих линз Ods' < 0, а для рассеивающих Ods' > 0, то специальным подбором линз в оптической системе можно почти полностью устранить С. а. У одиночных линз со сферическими поверхностями С. а. можно уменьшить, выбирая оптимальное соотношение радиусов кривизны этих поверхностей. При преломления показателе материала линзы n = 1,5 С. а. минимальна, если отношение радиусов равно . Уменьшить С. а. можно, используя оптические элементы с асферическими поверхностями (например, параболическими).

Лит.: Тудоровскиq А. Н., Теория оптических приборов, ч. 1, М.— Л., 1948; Русинов М. М., Техническая оптика, М.—Л., 1961; Волосов Д. С., Фотографическая оптика, М., 1971.

Л. Н. Капорский.